soft starter cabient
how do Squirrel Cage Motors Work? In essence, squirrel cage motors work no differently than most other induction motors and only differ in the specific interaction between rotor and stator. Our article all about induction motors contains a discussion of the principal laws behind all induction motors and gives an understanding of how motion is created from magnetism. Squirrel cage motors maximize electromagnetic induction by utilizing rotor bars to interact with the stator’s EMF. The stator usually contains windings of wire which carry an AC current; this current changes in sync with a sinusoidal curve (or “alternates”), which changes the current direction in the wire windings. When the current oscillates, the generated EMF will follow suit, and in certain arrangements will cause it to “rotate” with a frequency similar to the AC frequency. This rotating EMF produces an opposing voltage and EMF in the rotor bars, thus pushing the rotor around, generating rotational motion. This rotor does not spin at the exact frequency of the AC current and is why squirrel cage motors (as well as other induction motors) are considered asynchronous. There is always some loss, or “slip”, between the AC frequency and the rotational frequency of the shaft, and this is a consequence of why the rotor rotates in the first place. If the rotor were to spin at the same frequency, then the magnitude of the force on the rotor bars would equal zero, thus creating no motion. The rotor must always be slower to feel the electromagnetic induction effect as if the rotor is playing a constant game of magnetic “catch-up"
评论
发表评论